Design of Multi-Binding-Site Inhibitors, Ligand Efficiency, and Consensus Screening of Avian Influenza H5N1 Wild-Type Neuraminidase and of the Oseltamivir-Resistant H274Y Variant

نویسندگان

  • Alfonso T. García-Sosa
  • Sulev Sild
  • Uko Maran
چکیده

The binding sites of wild-type avian influenza A H5N1 neuraminidase, as well as those of the Tamiflu (oseltamivir)-resistant H274Y variant, were explored computationally to design inhibitors that target simultaneously several adjacent binding sites of the open conformation of the virus protein. The compounds with the best computed free energies of binding, in agreement by two docking methods, consensus scoring, and ligand efficiency values, suggest that mimicking a polysaccharide, beta-lactam, and other structures, including known drugs, could be routes for multibinding site inhibitor design. This new virtual screening method based on consensus scoring and ligand efficiency indices is introduced, which allows the combination of pharmacodynamic and pharmacokinetic properties into unique measures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuraminidase inhibitor R-125489--a promising drug for treating influenza virus: steered molecular dynamics approach.

Two neuraminidase inhibitors, oseltamivir and zanamivir, are important drug treatments for influenza. Oseltamivir-resistant mutants of the influenza virus A/H1N1 and A/H5N1 have emerged, necessitating the development of new long-acting antiviral agents. One such agent is a new neuraminidase inhibitor R-125489 and its prodrug CS-8958. An atomic level understanding of the nature of this antiviral...

متن کامل

Understanding the cross-resistance of oseltamivir to H1N1 and H5N1 influenza A neuraminidase mutations using multidimensional computational analyses

This study embarks on a comprehensive description of the conformational contributions to resistance of neuraminidase (N1) in H1N1 and H5N1 to oseltamivir, using comparative multiple molecular dynamic simulations. The available data with regard to elucidation of the mechanism of resistance as a result of mutations in H1N1 and H5N1 neuraminidases is not well established. Enhanced post-dynamic ana...

متن کامل

Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance

There are two major classes of antivirals available for the treatment and prevention of influenza, the M2 inhibitors and the neuraminidase inhibitors (NAIs). The M2 inhibitors are cheap, but they are only effective against influenza A viruses, and resistance arises rapidly. The current influenza A H3N2 and pandemic A(H1N1)pdm09 viruses are already resistant to the M2 inhibitors as are many H5N1...

متن کامل

Abstract Submitted for the MAR08 Meeting of The American Physical Society Design of new inhibitors for H5N1 avian influenza using a molec-

Submitted for the MAR08 Meeting of The American Physical Society Design of new inhibitors for H5N1 avian influenza using a molecular dynamics simulation JIN WOO PARK, WON HO JO, Seoul National University — Recently, there has been a growing interest in the treatment of H5N1 avian influenza. One of the most widely used antiviral agents is oseltamivir. However, it has been reported that oseltamiv...

متن کامل

Effect of Neuraminidase Inhibitor–Resistant Mutations on Pathogenicity of Clade 2.2 A/Turkey/15/06 (H5N1) Influenza Virus in Ferrets

The acquisition of neuraminidase (NA) inhibitor resistance by H5N1 influenza viruses has serious clinical implications, as this class of drugs can be an essential component of pandemic control measures. The continuous evolution of the highly pathogenic H5N1 influenza viruses results in the emergence of natural NA gene variations whose impact on viral fitness and NA inhibitor susceptibility are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 48 10  شماره 

صفحات  -

تاریخ انتشار 2008